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AMG:
What is Algebraic Multigrid??

® Any multilevel method where geometry is not used
(and may not be available) to build coarse grids,
Interpolation and restriction, or coarse-grid
operators.

® “Classical” AMG was introduced by Brandt,
McCormick and Ruge in 1982. It was explored
early on by Stueben in 1983, and popularized by
Ruge and Stuben in 1987.

@ This tutorial will describe only the classical AMG
algorithm.
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AMG:
What is Algebraic Multigrid??

® Many other algorithms qualify under the definition
given. Some whose approaches are closely related
to “classical AMG”:

= Chang
e Griebel, Neunhoeffer, Regler
= Huang
= Krechel, Stueben
e Zaslavsky

® \Work close to the original, but using different
approaches to coarsening or interpolation:

e Fuhrmann
«Kickinger
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AMG:
What is Algebraic Multigrid??

® Other approaches that are important, novel,
historical, or weird:

e Multigraph methods (Bank & Smith)
= Aggregation methods (Braess; Chan & Zikatanov & Xu )
< Smoothed Aggregation methods (Mandel & Brezina & Vanek)
e Black Box Multigrid (Dendy, Dendy & Bandy)
e Algebraic Multilevel Recursive Solver (Saad)
e Element based algebraic multigrid (Chartier; Cleary et al)
e MultiCoarse correction with Suboptimal Operators (Sokol)
« Multilevel block 1LU methods (Jang & Saad; Bank & Smith &
Wagner; Reusken)
e AMG based on Element Agglomeration (Jones & Vassilevski)
e Sparse Approximate Inverse Smoothers (Tang & Wan)
<Algebraic Schur-Complement approaches (Axelsson &
CASC Vassilevski & Neytcheva) ven 4



Highlights of Multigrid:
The 1-d Model Problem

e Poisson’s equation: - DU =T in10,1], with
boundary conditions u(0) =u(l) =0.
® Discretized as:
“Uj. 1 2Uj - Uiy

h2

® Leads to the Matrix equation AU =T | where
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Highlights of Multigrid:
Weighted Jacobi Relaxation

® Consider the iteration:

u(new) A (1- w) ufold +;W2( uold) + y(olg) + £ )
® Letting A =D+L+U, the matrix form is:

u(new) — [(1- W)l - wD'l(L+U)]u(0'd) +wD I

= Gyu(0ld) +wD "'

o Itis easy to seethatif € ¥au(®xact) . U(appmx),

then
e(new) — Gwe(old)

CASC veh 6



Highlights of Multigrid:
Relaxation Typically Stalls

e The eigenvectors of Gy are the same as those of A,
and are Fourier Modes: V; =sin (ikp/N), k =1,2,7 ,N- 1

® The eigenvalues of Gw arel- 2wsin? (kp/2N), so
the effect of relaxation on the modes is:

N =400 Note: No value
W= U3 of W will damp
W= 1/2 out the low
W = 2/3 frequency

waves
w=1

CASC veh 7



Highlights of Multigrid:
Relaxation Smooths the Error

® Initial error,

@ Error after 35 iteration sweeps:

CASC

Many relaxation
schemes
have the smoothing
property, where
oscillatory

modes of the error
are
eliminated
effectively, but
smooth modes are

very slowly.
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Highlights of Multigrid: Smooth error
can be represented on a coarse grid

® A smooth function:

® Can berepresented by linear
Interpolation from a coarser grid:

CASC

On the coarse grid, the
smooth error appears to
be relatively higher in
frequency: in the example
it is the 4-mode, out of
a possible 16, on the fine
grid, 1/4 the way up the

spectrum. On the coarse
grid, it is the 4-mode out
of a possible 8, hence it
is 1/2 the way up the
spectrum.

Relaxation will be more
effective on this mode if
done on the coarser griel!!




Highlights of Multigrid:
Coarse-grid Correction

. h h . . .
e Perform relaxation on A"u" = f"on fine grid until
error is smooth.

. _¢h AN
e Compute residual, g;]—f - A'W" and transfer to the
coarse grid r2" = 1N

® Solvethe coarse-grid residual equation to obtain the
error: A2, h =\ eh :(Am)-lrm

® Interpolate the error to the fine grid and correct the
fine-grid solution: A
J uh A uh + 1) e
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Highlights of Multigrid:
Coarse-grid Correction

h . h — Correct
Relax onA U f .
§ uPh A uh + eN@

Compute |h—fh' hlh /

Restrict rI]nter olagﬁ
r2h — |€hrh el EI he
( 2h 20 — .2h /
Solve AT e4! =t
‘— . »‘
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Highlights of Multigrid:
Tools Needed

® Interpolation and restriction operators:

0.5 OO
gl.o 8
| R 2.5 Q |2h QL0 5 b 0% 10 025 5
oh = ¢ 0 & o =g 010 6 I =g 0.25 1.0 0.25 A
& 05 058 e 010¢ e 0.25 1.0 0.25¢
¢ 1.08
g 0.5¢
Linear Injection Full-weighting

Interpolation

® Coarse-grid Operator A Two methods:
(1) Discretize equation at larger spacing
(2) Use Galerkin Formula:

A = 1AM D
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Highlights of Multigrid:
Recursion: the (n,0) V-cycle

® Major question: How do we “solve” the coarse-grid
residual equation? Answer: recursion!

@ u"A c"(ah M uhA uh +e" @
P2 A NG - AMuh) e A 45 u2h
@ uv2A " (AM M) UA U + e @
FMA 106 - ATy e 20 A A 2N 4
u4h A Gn(A4h’f4h)‘ ‘ uUdh A ydh + e4h
8 A (B 40 4 4n .
FONA 1R - ATy e A Ag u8h
ushA c"(A® @ @ uBhA uBh + g8
0’ ’Q’
. .
“," .’0'
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Algebraic multigrid:
for unstructured-grids

e Automatically defines coarse “grid”

® AMG has two distinct phases:
— setup phase: define MG components
— solution phase: perform MG cycles

® AMG approach is opposite of geometric
MG

— Tix relaxation (point Gauss-Seidel)

— choose coarse “grids” and prolongation, P,
so that error not reduced by relaxation is
in range(P)

— define other MG components so that
coarse-grid correction eliminates error in
range(P) (i.e., use Galerkin principle)

(in contrast, geometric MG fixes coarse grids,
then defines suitable operators and smoothers)

Iy

///////
.

\\\\\

i

f
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AMG has two phases:

® Setup Phase ‘1
— Select Coarse “grids,” w m=12 ...

[ _
— Define interpolation, Im+1, M=1,2, ...

— Define restriction and coarse-grid operators

m+l_(I Am+1 m+1Am m

+ﬁ = Im Im+1

® Solve Phase
— Standard multigrid operations, e.g., V-cycle, W-
cycle, FMG, etc
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In AMG, we choose relaxation first:

e Typically, pointwise Gauss-Seidel is used
A =(D+L+U)

® The iteration is developed:

AX =D
(D+L)x =b - Ux

XMW = (D+L) b - (D+L) *Uxold
@ Add and subtract (D+L) “(D+L)x°d to get:
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Gauss-Seidel relaxation
error propagation:

® The Iteration is:

® Subtracting both sides from the exact solution:
x exact _ ynew — yexact . ( yold 4 (pD4[)" 1 old )

@ Usingr = Ae this can be written as:

e new

1- (D+L) A |eol
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An observation: error that iIs slow
to converge ¢ “small” residuals

® Consider the iterative method error recurrence
ek+l = (- Q 1A) &

® Error that is slow to converge satisfies
(I-Q 'A)eEe ?2 O !AeEDO
? rkEO

® Perhaps a better viewpoint is

(I-Q 'A)eEe ? <Q'1A e, Ae ) « e, Ae)

CA S C veh 18



Some Implications
of slow convergence

® For most iterations (e.g., Jacobi or Gauss-Seidel)
this last holds if ( D™ *Ae, Ae ) « {e, Ae). (1)

§orf

® Hence A a; ¢

=1

1 Qo=

"i% implying that, on average,
1

|I‘i| K« aii |ei |

® An implication is that, If € is an error slow to
converge, then locally at least, €; can be well-
approximated by an average of its neighbors:
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In Multigrid, error that iIs slow
to converge Is geometrically smooth

@ Combining the algebraic property that slow
convergence implies “small residuals” with the
observation above, in AMG we DEFINE smooth
error:

® Smooth error Is that error which is slow to
converge under relaxation, that is,

(I- Q" 'A) e Ee

or, more precisely,

I(1- Q "A)elly Ellell
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But sometimes, smooth error isn’t!
(example from Klaus Stueben)

® Consider the problem

- (aUx)x - (bUy)y + CUxy = f(X,y)
@ on the unit square, using a regular Cartesian grid,
with finite difference stencils and values for

a,b,and c:
a=1 A=1
b=1000 b=1
c=0 c=2
a=1 a=1000
b=1 b=1
c=0 c=0

CASC

Uy =h %[1 -2 1]

u _ 1 12
Yy = 5| -
h?| 4
1 -1 1
Ux :—2 1 -2 1
2h 1 _1
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But sometimes, smooth error isn’t!
- (aUx)x - (bUy)y + CUxy = f(X,y)

® Using a zero right-hand side and a random initial
guess, after 8 sweeps of Gauss-Seidel iteration
the error is unchanging in norm. By our definition,
the error is smooth. And it looks like this:

veh 22
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Smooth error for
- (aUx)x - (bUy)y +Cny - f(X,y)
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AMG uses dependence (influence) to
determine MG components

® We need to choose a subset of the gridpoints
(coarse grid) that can be used 1) to represent
smooth errors, and 2) to interpolate these errors
to the fine grid.

e Intuitively, a point u; Is a good candidate for a C-
point If its value is important in determining the
value of another point, U; in the ith equation.

e IT the a;; coefficient is “large” compared to the
other off-diagonal coefficients in the ith equation
then Ujinfluences u; (or U; depends on Uj ).
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Dependence and smooth error

® For M-matrices, we define “i depends on j ” by

g 70 mx {-gt, 0<gil

alternatively, “ J influences I.

® It is easy to show from (1) that smooth error
satisfies ( Ae,e) « (De,e) (2)
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Dependence and smooth error

® For M-matrices, we have from (2)

1o % Qigyri ™ Sy
- a —0 « 1
2 i?jgzaii & 5

— If €j does not depend on ej then the inequality

may be satisfied because a; j IS “small”.
— 1T €; does depend on ej, then aij need not be

small, and the inequality must be satisfied by

® This implies that smooth error varies slowly in the
direction of dependence.
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Some useful definitions

@ The set of dependencies of a variable U;, that is,
the variables upon whose values the value of U;
depends, Is defined as

[ U
Si =iJ:-a; > max { -ay} ?
| : 1 K7 14 5

® The set of points that U; influences Is denoted:

I
S; va{j:ies;)
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More useful definitions

® The set of coarse-grid variables Is denoted C .
® The set of fine-grid variables is denoted F.

® The set of coarse-grid variables used to
interpolate the value of the fine-grid variable Uj,
called the coarse interpolatory set for i, IS
denoted C; .
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Two Criteria for Choosing
the Coarse Grid Points

® First Criterion:

F - F dependence

— (C1) For each 1€ F, each pomtj e S should
either be in C itself or should depend on at

least one point in C;

Je‘Si ké C;
e F
neC

CASC

Since the value oflj depends on the
value ofYj , the value i must be
represented on the coarse-grid for

good interpolation. 1§ isn’t eﬁ: point,

It should depend on a point In SO Its
value Is “represented” in the
Interpolation.
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Two Criteria for Choosing
the Coarse Grid Points

® Second Criterion: Maximal Subset

— (C2) C should be a maximal subset with the
property that no C -point depends on another.

— (C1) tends to increase the number of C-points.
In general, the more C-points on \/\/I_I the
better the h-level convergence.

— But more C-points means more work for
relaxation and interpolation.

— (C2) Is designed to limit the size (and work) of
the coarse grid.
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Two Criteria for Choosing
the Coarse Grid Points

@ It is sometimes not possible to satisfy both
criteria simultaneously (an example will be seen
shortly).

® In those cases, we choose to satisfy (C1), the
requirement that F-F dependencies be represented
In the coarse-interpolatory set, while using (C2) as
a guide.

® This choice leads to somewhat larger coarse grids,
but tends to preserve good convergence properties.

CA S C veh 31



Choosing the Coarse Grid Points

Assign to each gridpoint k a “value” equal to the
number of points that depend on k.

Choose the first point with global maximum value
as a C-point.

The new C-point can be used to interpolate values
of points it influences. Assign them all as F-
points.

Other points influencing these new F-points can be
used In their interpolation. Increment their value.

Repeat until all points are C- or F-points.
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Ruge AMG:
start

= select C-pt with
maximal measure

= select neighbors
as F-pts

=% update measures
of F-pt neighbors
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Ruge AMG:
select C-pt 1

= select next C-pt
with maximal
measure

= select neighbors
as F-pts

= update measures
of F-pt neighbors
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Ruge AMG:
select F-pt 1

= select C-pt with
maximal measure

= select neighbors
as F-pts

=% update measures
of F-pt neighbors




Ruge AMG:
update F-pt neighbors 1

= select C-pt with

maximal measure

= select neighbors

as F-pts

=® update measures
of F-pt neighbors




Ruge AMG:
select C-pt 2

= select next C-pt
with maximal
measure

= select neighbors
as F-pts

= update measures
of F-pt neighbors




Ruge AMG:
select F-pt 2

= select next C-pt
with maximal
measure

= select neighbors
as F-pts

= update measures
of F-pt neighbors




Ruge AMG:
update F-pt neighbors 2

= select next C-pt

with maximal
measure

= select neighbors
as F-pts

= update measures
of F-pt neighbors




Ruge AMG: select C-pt, F-pts,
update neighbors 3

= select next C-pt
with maximal
measure

= select neighbors
as F-pts

= update measures
of F-pt neighbors
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Ruge AMG: select C-pt, F-pts,
update neighbors 4

CASC

= select next C-pt
with maximal
measure

= select neighbors
as F-pts

= update measures
of F-pt neighbors



Ruge AMG: select C-pt, F-pts,
update neighbors 5

= select next C-pt
with maximal
measure

= select neighbors
as F-pts

» update measures
006060060 of F-pt neighbors
000000
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Ruge AMG: select C-pt, F-pts,
update neighbors 6,7,8,9

O 000000
= select next C-pt
OO0 0000600 with maximal
®© 00600600 measure
® ® ® ® ® ® ® -sciccineighbors
as F-pts
O 000000
= update measures
006060060 of F-pt neighbors
O 000000
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Examples: Laplacian Operator
5-pt FD, 9-pt FE (quads), and 9-pt FE (stretched quads)

o>-pt FD 9-pt FE (quads)
, 1 ) 3/4-1 -1 -1C.
4 Q -1 8 -1¢
¢c-1 4 -10 G _
e -1 ‘ €.1 -1 -1¢
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

=% update measures
of F-pt neighbors

CASC



Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

= update measures
of F-pt neighbors
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

= update measures
of F-pt neighbors
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

= update measures
of F-pt neighbors
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

= update measures
of new F-pt
neighbors
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

= update measures
of new F-pt
neighbors
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

= update measures
of new F-pt
neighbors
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

= update measures
of new F-pt
neighbors
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

= update measures
of new F-pt
neighbors
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

= update measures
of new F-pt
neighbors
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

= select C-pt with
maximal measure

= select neighbors
as F-pts

= update measures
of new F-pt
neighbors
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

» Modulo periodicity,
It's the same
coarsening as iIn
the Dirichlet case.

=» However, It has
many F-F
connections that do
not share a common
C-point
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Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

% A second pass is made
In which some F-points
are made into C-points
to enforce (C1).

=% Goals of the second
pass include minimizing
C-C connections, and
minimizing the number
of C-points converted
to F-points.
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How well does AMG coarsen:

y)

= (X,

+ C Uxy

- (aUx)x - (bUy)y

@)
(D)
= c
o o
TN | YR <
< Q O e o c =
© O >
O C Y=
O o O
el
wn <
: 5852
— 8o — O © S.ﬂ
TR=AT TRRTERT O =
o) c o .=
= O O
3

V2Y2747272%727274 %2
22727 % %% % %"
V2272772 % %%
27272 % %% %%
22727 7% %% % %%
2272727274 % %4

dependence!
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How well does AMG coarsen:
- (aux)x - (bUy)y T CUxy = f(X,y)

a=1
b=1000
c=0

N
N
N
N
N
N

2%%%%"%
2%%%%"%
2%% %%
2%% %%
2% %% %%

% In each region, AMG
coarsens only in the
direction of
dependence!
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How well does AMG coarsen:
- (aux)x - (bUy)y T CUxy = f(X,y)

% In each region, AMG
coarsens only in the
direction of
dependence!
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How well does AMG coarsen:
- (aux)x - (bUy)y T CUxy = f(X,y)

5
(@R

% In each region, AMG
coarsens only in the
direction of
dependence!
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How well does AMG coarsen:
- (aux)x - (bUy)y T CUxy = f(X,y)

O o >
T
N R =

N
N
N
N
N
N

NN,
NN
NN,
AN
AN
ANANANAS

% In each region, AMG
coarsens only in the
direction of
dependence!
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Prolongation

®
O
o
T
~~
U
D
S
[
) ]\ s /
<D

I
C/\C The interpolated value at

point i is just ®i if i is a C-
point. If i1 is an F-point,

y the value Is a weighted sum
of the values of the points iIn
’@cle coarse interpolatory set
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To define prolongation at i, we must
examine the types of connections of U;.

CASC

Sets of connection types:

©i ™= i is dependent on these
coarse interpolatory C-
points.

D; s
| IS dependent on these F-

points.
pra-

| does not depend on these
“weakly connected” points,

whirh mav ha C— nr E_ V&



Prolongation iIs based on smooth error
and dependencies (from M-matrices)

Recall that smooth error is characterized by
“small” residuals:

i =a;;€ + a aij ej EO

JEN;

which we can rewrite as:
aiiei E - a aij ej

] 21

We base prolongation on this formula by
“solving” for €i and making some approximating
substitutions.
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Prolongation iIs based on smooth error
and dependencies (from M-matrices)

We begin by writing the smooth-error relation:

aiiei E - a aij ej'
] 21

Identifying i1ts component sums:

S o) o) o)
d;i€; E - a aijej - a aijej' - a aijej
1€G jen’ jeD"
. Coarse F-point
Interpolatory dependencies
set

We must approximate €;in each of the last
two sums in terms of ©j or of €; for jet;
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For the weak connections:
let €; E ei

~

'E‘aauj'aauj'aauj
jeg jep® jenp"

Coarse
interpolatory
set

F-point
dependencies

Effectively, this throws the weak
cong)ectlons onto the dlagonal

o)
(}au + a ajj 09| ) a aij € - a aj; €j
e jeDd" ¢ jéec jé DS

This approximation can't hurt too much:
e Since the connection Is weak,
e IT | depended on points in Di, smooth error varies

slowly in the direction of dependence
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For the F-point dependencies:

use a weighted avg. of errors in C;, C Ci'

Ya (o JS o
(;an + a alj CFi E - a alj j a aij ej
e je Dy é je G jé Dy

Coarse F-point
interpolatory set  dependencies

: Y o o)
Approximate €j by a c Q ajkeko
weighted average of . EekeC é
the °K in the coarse ' 4, ] (-5

¢
@itgr@(j)latory set kec c',

It is for this reason that the intersection of the
coarse Iinterpolatory sets of two F-points with a

dependence relationship must be nonempty (C1).
CASC



Finally, the prolongation
weights are defined

Making the previous substitution, and with a bit of
messy algebra, the smooth error relation can be
“solved” for €; to yield the interpolation formula:

S E a Wij ej
1€ G
where the prolongation weights are given:

o ik
aijt a s
jéDS A m

'meCI
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Highlights of Multigrid:

Storage: f "uh must be stored each level

® In 1-d, each coarse grid has about half |_’_H_|_H

the number of points as the finer grid.

® In 2-d, each coarse grid has about one-
fourth the number of points as the finer

grid.

® In d-dimensions, each coarse grid has
about 2 d the number of points as the
finer grid.

d
i i _ i 2N
® Storage cost: NG (1427 0427 M4 3012 4pm Mdy o

- d

1-2
less than 2, 4/3, 8/7 the cost of storage on the fine grid
for 1, 2, and 3-d problems, respectively.
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AMG storage:
grid complexity

® For AMG there is no simple predictor for total
storage costs.u, ", and A™ =7 1Am I
must be stored on all levels.

e Define SW the grid complexity, as the total
number of unknowns (gridpoints) on all levels,
divided by the number of unknowns on the finest
level. Totga] storage of the vectors U and f
occupy 2S storage locations.

CASC veh 71



AMG storage:
operator complexity

® Define SA the operator complexity, as the total
number of nonzero coefficients of all operators A
divided by the number of nonzero coefficients In
the fine-level operator A’ Total storage of the
operators occupies s A storage locations.
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AMG storage:
Interpolation

® We could define S | , an interpolation complexity,
as the total number of nonzero coefficients of all
operators I ™ “divided by the number of nonzero
coefficients in the operator IO . This measure Is
not generally cited, however (like most
multigridders, the AMG crowd tends to ignore the
cost of intergrid transfers).

® Two measures that occasionally appear are kA
the average “stencil size,” and k! , the average
number of interpolation points per F—point.
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AMG Setup Costs:
flops

® Flops In the setup phase are only a small portion of
the work, which includes sorting, maintaining
linked-lists, keeping counters, storage
manipulation, and garbage collection.

® Estimates of the total flop count to define
interpolation weights (w!) and the coarse-grid
operators (w?) are:

whA = Nkl 2k (kA - k1) +3k! + kA)
and

w! = Nk'(3(KA - k1) -2)
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AMG setup costs:
a bad rap

e Many geometric MG methods need to compute
prolongation and coarse-grid operators

@ The only additional expense in the AMG setup phase
IS the coarse grid selection algorithm

® AMG setup phase is only 10-25% more
expensive than in geometric MG and may
be considerably less than that!
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Highlights of Multigrid:
Computation Costs

® Let 1 Work Unit (WU) be the cost of one
relaxation sweep on the fine-grid.

@ Ignore the cost of restriction and interpolation
(typically about 20% of the total cost). (See?)

® Consider a V-cycle with 1 pre-Coarse-Grid
correction relaxation sweep and 1 post-Coarse-
Grid correction relaxation sweep.

® Cost of V-cycle (in WU):

2(1+2 G4 W yp 3 2 Lo-Mdy _ 2

1- 2 d

e Cost Is about 4, 8/3, 16/7 WU per V-cycle in 1,
2, and 3 dimensions.
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AMG Solve Costs:
flops per cycle

® The approximate number of flops in on level m for
one relaxation sweep, residual transfer, and
Interpolation are (respectively)

INA INA + 2kINF Nny + 2k N/,
where Nm is the number of coefficients in A™ )
andN$ . NFare the numbers of C—, F—points on W'

e The total flop count for a (Nng. Ny) V-cycle, noting
that a Nm EN and letting N =Ny + Ny s
approXimately

N(2(n+1) kAsW + 4kl + sW. 1)
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AMG Solve Costs:
flops per cycle, again

e All that is very well, but in practice we find the
solve phase is generally dominated by the cost of
relaxation and computing the residual.

® Both of those operations are proportional to the
number of nonzero entries in the operator matrix
on any given level.

® Thus the best measure of the ratio of work done
on all levels to the work done on the finest level Is
operator complexity: S A
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Highlights of Multigrid: difficulties-
anisotropic operators and grids

e Consider the operator : ' 2, 2,
- 8;72 b;TZ = f(x,y)
® |If a«b then the GS-smoothing
factors in the x- and y-directionsare ,, />~ |
shown at right. W /N T
Note that GS relaxation does not Zﬁz?/ o

damp oscillatory components inthe @ = & %
X-direction.

® The same phenomenon
occurs for grids with much
larger spacing in one direction
than the other:
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Highlights of Multigrid: difficulties-
discontinuous or anisotropic coefficients

e Consider the operator : - N a(D(x,y)Nu) where

) = YA11(%,y)  dpa(X,y) &
gle(X’y) d22(X,y)S

® Again, GS-smoothing factors in the x- and y-directions
can be highly variable, and very often, GS relaxation does
not damp oscillatory components in the one or both
directions.

D(X,y

® Solutions: line-relaxation (where whole gridlines of
values are found simultaneously), and/or semi-
coarsening (coarsening only in the strongly coupled
direction).
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AMG does semi-coarsening
automatically!

@ Consider the operator :

| 2 | 2

u u

e b@ = Txy) automatically
produces a
® Inthelimit,as a the semi-coarsened
stencil becomes: grid!!
3/, 1 -4 -1 5
c2 8 20
€.1 -4 -1¢
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AMG Convergence:
there iIs theory (some)

® There is some theory, although it is of limited
utility. It generally looks like:

® Theorem

— Let A" ¥4A be SPD, and let the interpolation
operator lh+1 be full rank, and let restriction

and coarse-grid operators be defined by
m+1 _ ,/m T m+1 _  m+1l,mm
Im _(|m+1) and A =Im “A Im+1

and let there be smoothing operators G'' and
coarse-grid correction operators

T =M™, (AMTh - riam
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AMG Convergence:
there iIs theory (some)

® Theorem (continued)
— suppose that, for all e,
IG™e™ [z £ lle™ iz - dIT™ e™ iz

holds for some d >0 independently for all €"
and M.

Then d£1, and, provided the coarsest problem is
solved and at least one smoothing step Is
performed after each coarse-grid correction
step, the V-cycle has a convergence factor wrt
the energy norm bounded above by

v1-d.
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How’'s It perform (vol 1)?

Regular grids, plain, old, vanilla problems

® The Laplace Operator:

Convergence Time Setup

Stencil per cycle |Complexity |per Cycle |Times

5-pt 0.054 2.21 0.29 | 1.63

5-pt skew 0.067 2.12 0.27| 1.52

9-pt (-1,8) 0.078 1.30 0.26 | 1.83

9-pt (-1,-4,20) 0.109 1.30 0.26 | 1.83

e Anisotropic Laplacian: - €Uxx - Uyy

Epsilorl 0.001| 0.01 0.1 0.5 1 2 10 100| 1000
Convergence/cycle 0.084| 0.093| 0.058| 0.069| 0.056| 0.079| 0.087| 0.093| 0.083
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How’s 1t perform (vol 11)?

Structured Meshes, Rectangular Domains

® b5-point Laplacian on regular rectangular grids

Convergence factor (y-axis) plotted against number of nodes (x-axis)

0.16 -
0.14
0.12
0.1
0.08
0.06
0.04 A
0.02 -

O ! 1
0 500000 1000000

=== 0.146

i 2 V4
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How’'s It perform (vol 111)?

Unstructured Meshes, Rectangular Domains

@ Laplacian on random unstructured grids (regular

triangulations, 15-20% nodes randomly collapsed into neighboring nodes)

Convergence factor (y-axis) plotted against number of nodes (x-axis)

0.3 A~

0.25 — e ().253

0.2

0.15

0.1

0.05

0 20000 40000 60000
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How’s It perform (vol 1V)?

Isotropic diffusion, Structured/Unstructured Grids

Na( d(x,y) Nu) on structured, unstructured grids

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Bl 6a
B 6b
BEm 7a
= 7b
B 8a
B 8b
B 9a
B 9

N=16642 N=66049 N=13755 N=54518

Structured  Structured Unstruct. Unstruct.
Problems used: “a” means parameter c=10, “b” means c=1000

1.0 0.125£ mex{|x- 0.5 -05} £0.25
6: d(x,y) =l.0+c‘x-y‘ 8 d(x,y) =i { | y ‘}
T¢C otherwise

11.0 x £0.5 i v 2 i 2
7 d(xy) = | 0 ey =it 0.125€ \ (x- 0.5)%+(y- 052 £0.25
¢ x>0 ic otherwise
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How’s It perform (vol 1Va)?

Isotropic diffusion, Structured/Unstructured Grids

Na( d(x,y) Nu) on structured, unstructured grids

0.45 -

04 A

0.35 -
B 10a, n=2

03 -
Bl 10b, n=2
0.25 | B 11a, n=10
02 == 11b, n=10
0.15 - Bl 12a, n=50
01 1 mm 12b, n=50

0.05 -

O -

N=16642 N=66049 N=13755 N=54518
Structured  Structured Unstruct. Unstruct.

Problem used: “a” means parameter c=10, “b” means c=1000
“Checkerboard” of coefficients 1.0 and c, squares sized 1/n:

P +1 ] j+1

1.0 ﬁ£X<T £y<—, | +] even
d(x,y) =i _

i | |+1 J j+1

7 C REX<—7— gEy </, It] odd
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How’s 1t perform (vol V)?

Laplacian operator, unstructured Grids

Convergence factor

0.3
0.25 ~
0.2
0.15
0.1 L 0.1002

0.05 ~

0.2754

0

Gridpoints
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So, what could go wrong?

Strong F-F connections: weights are dependent on each other

e For point | the value €j is interpolated from Kq, k,
and iIs needed to make the interpolation weights for
approximating €;.

e For point ] the value €; is interpolated from Kq,k, ,
and iIs needed to make the interpolation weights for
approximating €; .

@ It's an implicit system!

k& C;
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Is there a fix?

® A Gauss-Seidel like iterative approach to weight
definition is implemented. Usually two passes
suffice. But does it work?

® Frequently, it does: Convergence factors for

Laplacian, stretched quadrilaterals
theta Standard Ilterative

DX — 10 Dy 0.25 0.47 0.14

0.5 0.24 0.14

DX — 100 Dy 0.25 0.83 0.82

0.5 0.53 0.23
CASC e



Another Fix: indirect interpolation
(see Stueben’s text for detail)

® The 5-point problem cannot give “full” coarsening
because the F-point in the middle has no
connection to any of the 4 C-points. Hence, there
IS no way to Interpolate its value.
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Another Fix: indirect interpolation
(see Stueben’s text for detail)

@ Full coarsening could be achieved by indirect
Interpolation.

® First interpolate the F-points from the C-points.

> @ «

>0 + 0O
>0 « 0

4
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Another Fix: indirect interpolation
(see Stueben’s text for detail)

@ Full coarsening could be achieved by indirect
Interpolation.

® First interpolate the F-points from the C-points.
® Then interpolate the “middle” from the F-points.

e o o
v
o> 0«0
?
e o o

e Similar treatment could be applied whenever F-F
dependencies arise.
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AMG for systems

e How can we do AMG on systems?

YA11 Az O3 %: Y %
$A2 Az eve £9¢

® Naive approach: “Block” approach (block Gauss-Seidel,
using scalar AMG to “solve” at each cycle)

A -1
uA (Aqq) (f - Apv)
VA (Ay) Mg - Ayu)

® Great ldea! Except that it doesn’'t work! (relaxation
does not evenly smooth errors in both unknowns)
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AMG for systems: a solution

® To solve the system problem, allow interaction
between the unknowns at all levels:

Kk
K _ AL A © 'k IS U
“C K and k+1 = ¢ « . O
eAry Ay e O (|k+1)vc',

® This is called the “unknown” approach.

® Results: 2-D elasticity, uniform quadrilateral
mesh:

mesh spading0.125 0.0625 0.031350.01562
Convergence factor0.22 0.35 0.42 0.44
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So, what else can go wrong?
Ouch! Thin body elasticity!

e Elasticity, 3-d, thin bodies!
Wanted:

1-n 1+n
Uxx + ?( Uyy + Uzz) + T( Vxy + Wxz) =f4

v +_1-n Vyxx + V +_1+n Uxy + W =f

yy + 5 (Vo +vzz) 5 (U +Wyz) =1, Good solution
1-n 1+n

Wzz + 5 (Wxx +Wyy) +—2 (sz +Vyz) =f3 methOd

for this
problem.

e Slide surfaces, Lagrange multipliers,
force balance constraints:
Z I %9%1%: 3/51%
EU V EX2; &Fp; REWARD

® S is “generally” positive definite, V
can be zero, U' 2T
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Needed: more robust methods for
characterizing smooth error

® Consider quadrilateral finite elements on a
stretched 2D Cartesian grid (dx -> infinity):

-1 -4 -1
A=|2 8 2
-1-4-1

® Direction of dependence iIs not apparent here

e Iterative weight interpolation will sometimes
compensate for mis-identified dependence

@ Elasticity problems are still problematic
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Scalability 1s central for large-scale
parallel computing

® A code is scalable If it can effectively use

additional computational resources to solve larger
problems

® Many specific factors contribute to scalability:
— architecture of the parallel computer
— parallel implementation of the algorithms
— convergence rates of iterative linear solvers
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In Conclusion,
AMG Rules!

@ Interest in AMG methods is high, and probably
still rising, because of the increasing importance
of terra-scale simulations on unstructured grids.

® AMG has been shown to be a robust, efficient
solver on a wide variety of problems of real-world
Interest.

® Much research is underway to find effective ways
of parallelizing AMG, which iIs essential to large-
scale computing.
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